8,609 research outputs found

    Star Formation Density and Halpha Luminosity Function of an Emission Line Selected Galaxy Sample at z ~ 0.24

    Full text link
    We use narrowband imaging (FWHM = 70 A) to select a sample of emission line galaxies between 0.20 <~ z <~ 1.22 in two fields covering 0.5 sq. deg. We use spectroscopic follow-up to select a sub-sample of Halpha emitting galaxies at z ~ 0.24 and determine the Halpha luminosity function and star formation density at z ~ 0.24 for both of our fields. Corrections are made for imaging and spectroscopic incompleteness, extinction and interloper contamination on the basis of the spectroscopic data. When compared to each other, we find the field samples differ by \Delta \alpha = 0.2 in faint end slope and \Delta \log [ L* (ergs/s) ] = 0.2 in luminosity. In the context of other recent surveys, our sample has comparable faint end slope, but a fainter L* turn-over. We conclude that systematic uncertainties and differences in selection criteria remain the dominant sources of uncertainty between Halpha luminosity functions at this redshift. We also investigate average star formation rates as a function of local environment and find typical values consistent with the field densities that we probe, in agreement with previous results. However, we find tentative evidence for an increase in star formation rate with respect to the local density of star forming galaxies, consistent with the scenario that galaxy-galaxy interactions are triggers for bursts of star formation.Comment: Accepted for publication in MNRAS. The paper contains 14 figures and 7 table

    Environments and Morphologies of Red Sequence Galaxies with Residual Star Formation in Massive Clusters

    Get PDF
    We present a photometric investigation into recent star formation in galaxy clusters at z ~ 0.1. We use spectral energy distribution templates to quantify recent star formation in large X-ray selected clusters from the LARCS survey using matched GALEX NUV photometry. These clusters all have signs of red sequence galaxy recent star formation (as indicated by blue NUV-R colour), regardless of cluster morphology and size. A trend in environment is found for these galaxies, such that they prefer to occupy low density, high cluster radius environments. The morphology of these UV bright galaxies suggests that they are in fact red spirals, which we confirm with light curves and Galaxy Zoo voting percentages as morphological proxies. These UV bright galaxies are therefore seen to be either truncated spiral galaxies, caught by ram pressure in falling into the cluster, or high mass spirals, with the photometry dominated by the older stellar population.Comment: Accepted for publication in MNRAS, 11 pages, 11 figure

    Evidence for HI replenishment in massive galaxies through gas accretion from the cosmic web

    Get PDF
    We examine the H i -to-stellar mass ratio (H i fraction) for galaxies near filament backbones within the nearby Universe (d &lt; 181 Mpc). This work uses the 6 degree Field Galaxy Survey (6dFGS) and the Discrete Persistent Structures Extractor (DisPerSE) to define the filamentary structure of the local cosmic web. H i spectral stacking of H i Parkes All Sky Survey (HIPASS) observations yield the H i fraction for filament galaxies and a field control sample. The H i fraction is measured for different stellar masses and 5th nearest neighbour projected densities (ÎŁ5) to disentangle what influences cold gas in galaxies. For galaxies with stellar masses log(M⋆) ≀ 11 M⊙ in projected densities 0 ≀ ÎŁ5 &lt; 3 galaxies Mpc−2, all H i fractions of galaxies near filaments are statistically indistinguishable from the control sample. Galaxies with stellar masses log(M⋆) ≄ 11 M⊙ have a systematically higher H i fraction near filaments than the control sample. The greatest difference is 0.75 dex, which is 5.5σ difference at mean projected densities of 1.45 galaxies Mpc−2. We suggest that this is evidence for massive galaxies accreting cold gas from the intra-filament medium which can replenish some H i gas. This supports cold mode accretion where filament galaxies with a large gravitational potential can draw gas from the large scale structure

    The Clustering Of Galaxies Around Radio-Loud AGNs

    Full text link
    We examine the hypothesis that mergers and close encounters between galaxies can fuel AGNs by increasing the rate at which gas accretes towards the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the 6dFGS survey. We find that radio AGNs with more than 200 times the median radio power have, on average, more close (r<160 kpc) companions than their radio-quiet counterparts, suggestive that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is not a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years.Comment: 12 pages, 6 figure

    Halo detection via large-scale Bayesian inference

    Get PDF
    We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect halos of different masses in cosmological observations subject to noise and systematic uncertainties. Our methodology combines the previously published Bayesian large-scale structure inference algorithm, HADES, and a Bayesian chain rule (the Blackwell-Rao Estimator), which we use to connect the inferred density field to the properties of dark matter halos. To demonstrate the capability of our approach we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of HADES to the catalogue provides us with accurately inferred three-dimensional density fields and corresponding quantification of uncertainties inherent to any cosmological observation. We then use a cosmological simulation to relate the amplitude of the density field to the probability of detecting a halo with mass above a specified threshold. With this information we can sum over the HADES density field realisations to construct maps of detection probabilities and demonstrate the validity of this approach within our mock scenario. We find that the probability of successful of detection of halos in the mock catalogue increases as a function of the signal-to-noise of the local galaxy observations. Our proposed methodology can easily be extended to account for more complex scientific questions and is a promising novel tool to analyse the cosmic large-scale structure in observations.Comment: 17 pages, 13 figures. Accepted for publication in MNRAS following moderate correction

    The 6dF Galaxy Survey: Dependence of halo occupation on stellar mass

    Full text link
    In this paper we study the stellar-mass dependence of galaxy clustering in the 6dF Galaxy Survey. The near-infrared selection of 6dFGS allows more reliable stellar mass estimates compared to optical bands used in other galaxy surveys. Using the Halo Occupation Distribution (HOD) model, we investigate the trend of dark matter halo mass and satellite fraction with stellar mass by measuring the projected correlation function, wp(rp)w_p(r_p). We find that the typical halo mass (M1M_1) as well as the satellite power law index (α\alpha) increase with stellar mass. This indicates, (1) that galaxies with higher stellar mass sit in more massive dark matter halos and (2) that these more massive dark matter halos accumulate satellites faster with growing mass compared to halos occupied by low stellar mass galaxies. Furthermore we find a relation between M1M_1 and the minimum dark matter halo mass (MminM_{\rm min}) of M1≈22 MminM_1 \approx 22\,M_{\rm min}, in agreement with similar findings for SDSS galaxies. The satellite fraction of 6dFGS galaxies declines with increasing stellar mass from 21% at Mstellar=2.6×1010h−2 M⊙M_{\rm stellar} = 2.6\times10^{10}h^{-2}\,M_{\odot} to 12% at Mstellar=5.4×1010h−2 M⊙M_{\rm stellar} = 5.4\times10^{10}h^{-2}\,M_{\odot} indicating that high stellar mass galaxies are more likely to be central galaxies. We compare our results to two different semi-analytic models derived from the Millennium Simulation, finding some disagreement. Our results can be used for placing new constraints on semi-analytic models in the future, particularly the behaviour of luminous red satellites. Finally we compare our results to studies of halo occupation using galaxy-galaxy weak lensing. We find good overall agreement, representing a valuable crosscheck for these two different tools of studying the matter distribution in the Universe.Comment: 17 pages, 11 figures. arXiv admin note: text overlap with arXiv:1104.2447 by other author

    Second Data Release of the 6dF Galaxy Survey

    Full text link
    The 6dF Galaxy Survey is measuring around 150000 redshifts and 15000 peculiar velocities from galaxies over the southern sky at |b|>10 degrees. When complete, it will be the largest survey of its kind by more than an order of magnitude. Here we describe the characteristics of the Second Incremental Data Release (DR2) and provide an update of the survey. This follows earlier data made public in December 2002 and March 2004. A total of 83014 sources now have their spectra, redshifts, near-infrared and optical photometry available online and searchable through an SQL database at http://www-wfau.roe.ac.uk/6dFGS/.Comment: 11 pages, 7 figures. Submitted to PASA. High resolution versions of the figures can be obtained from http://www.aao.gov.au/local/www/6df/Publication

    The Southern 2MASS AGN Survey: spectroscopic follow-up with 6dF

    Full text link
    The Two Micron All-Sky Survey (2MASS) has provided a uniform photometric catalog to search for previously unknown red AGN and QSOs. We have extended the search to the southern equatorial sky by obtaining spectra for 1182 AGN candidates using the 6dF multifibre spectrograph on the UK Schmidt Telescope. These were scheduled as auxiliary targets for the 6dF Galaxy Redshift Survey. The candidates were selected using a single color cut of J - Ks > 2 to Ks ~ 15.5 and a galactic latitude of |b|>30 deg. 432 spectra were of sufficient quality to enable a reliable classification. 116 sources (or ~27%) were securely classified as type 1 AGN, 20 as probable type 1s, and 57 as probable type 2 AGN. Most of them span the redshift range 0.05<z<0.5 and only 8 (or ~6%) were previously identified as AGN or QSOs. Our selection leads to a significantly higher AGN identification rate amongst local galaxies (>20%) than in any previous galaxy survey. A small fraction of the type 1 AGN could have their optical colors reddened by optically thin dust with A_V<2 mag relative to optically selected QSOs. A handful show evidence for excess far-IR emission. The equivalent width (EW) and color distributions of the type 1 and 2 AGN are consistent with AGN unified models. In particular, the EW of the [OIII] emission line weakly correlates with optical--near-IR color in each class of AGN, suggesting anisotropic obscuration of the AGN continuum. Overall, the optical properties of the 2MASS red AGN are not dramatically different from those of optically-selected QSOs. Our near-IR selection appears to detect the most near-IR luminous QSOs in the local universe to z~0.6 and provides incentive to extend the search to deeper near-IR surveys.Comment: 57 pages, 12 figures, 4 tables, to appear in vol.27/4 of Publications of the Astronomical Society of Australia (PASA

    Near-ultraviolet signatures of environment-driven galaxy quenching in Sloan Digital Sky Survey groups

    Get PDF
    © 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. We have investigated the effect of group environment on residual star formation in galaxies, using Galaxy Evolution Explorer near-ultraviolet (NUV) galaxy photometry with the Sloan Digital Sky Survey group catalogue of Yang et al. We compared the (NUV - r) colours of grouped and non-grouped galaxies, and find a significant increase in the fraction of red sequence galaxies with blue (NUV - r) colours outside of groups. When comparing galaxies in mass-matched samples of satellite (non-central), and non-grouped galaxies, we found a > 4σ difference in the distribution of (NUV - r) colours, and an (NUV - r) blue fraction > 3σ higher outside groups. A comparison of satellite and non-grouped samples has found the NUV fraction is a factor of ~2 lower for satellite galaxies between 10 10.5 and 10 10.7 M ⊙ , showing that higher mass galaxies are more likely to have residual star formation when not influenced by a group potential. There was a higher (NUV - r) blue fraction of galaxies with lower SĂ©rsic indices (n < 3) outside of groups, not seen in the satellite sample. We have used stellar population models of Bruzual & Charlot with multiple burst, or exponentially declining star formation histories to find that many of the (NUV - r) blue non-grouped galaxies can be explained by a slow (~2 Gyr) decay of star formation, compared to the satellite galaxies. We suggest that taken together, the difference in (NUV - r) colours between samples can be explained by a population of secularly evolving, non-grouped galaxies, where star formation declines slowly. This slow channel is less prevalent in group environments where more rapid quenching can occur
    • 

    corecore